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Definition 

Computational models of muscles serve as important tools to understand the 

musculoskeletal physiology and biomechanics. Such models have been widely 

implemented in a variety of simulation platforms and incorporate varying degrees of 

physiological details. This article summarizes a simplified two-component biomechanical 

muscle model, first described by A. V. Hill in 1938, popularly known as the “Hill’s Muscle 

Model”. The Hill’s model provides thermodynamically constrained quantitative 

relationships between muscle length, shortening velocity, force and heat released during 

a muscle contraction. The model description, simulations and MATLAB script provided 

here highlight the computational features of the Hill’s muscle model. 
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Detailed Description 

1. Biomechanical components of muscle force generation 

 

Muscle cells contract to produce movement. During a contraction, the shortening 

of a muscle cell results in tension or force production. The basic structural components 

involved in force production consist of a series elastic element and a contractile element. 

The series elastic element is composed of tendons and aponeurosis. Tendons are tough 

extensions of the muscles and aponeurosis are thin sheets of tissue that attach the 

muscle to the bone. The contractile element is composed of sarcomeres which consist of 

thin actin filaments and thick myosin filaments. The sarcomeres form subunits called 

myofibrils which are long filaments bundled into muscle fibers (see Fig. 1). The myosin 

heads of the thick filament form cross-bridges with the adenosine triphosphate (ATP) 

binding sites on the thin actin filaments. To produce force in the muscle cell, the filaments 

slide past each other when bound to ATP. More details on muscle biology, molecular 

mechanisms and dynamics of force generation can be found in [1]. 

 

 

Figure 1 – Structural components of a muscle. Schematic illustrating the main 

structural components of a muscle.  

 

In his seminal paper (1938), A.V.Hill details his extensive experiments measuring 

the length, velocity, force and the energy released during muscle contractions [2]. Based 

on such physiological measures, Hill proposed a mathematical relationship between 

energy, force and velocity of muscle shortening/lengthening (also see [3]). It is noted that 

the details of muscle biology were unknown at that time. 



 

2. Model Description 

a) A two-component biomechanical model for force production 

A highly simplified biomechanical muscle model conceived by A.V. Hill consists of  

series elastic and contractile elements as shown in Fig. 2. 

 

 
 

Figure 2 – Biomechanical components of a muscle. A schematic showing the 

biomechanical equivalence of the structural components of a muscle. 

 

The series elastic element is assumed to be a spring-like structure with length, 𝐿𝑠𝑒 

and the length of the contractile element is given by 𝐿𝑐𝑒 such that, the total muscle length, 

𝐿 is: 

𝐿 = 𝐿𝑐𝑒 + 𝐿𝑠𝑒 

 

During an isometric contraction, the 𝐿𝑐𝑒  gradually reduces to mimic shortening of the 

contractile element. In parallel, the 𝐿𝑠𝑒 gradually increases (muscle stretch), to account 

for the constant muscle length. The contraction force of 𝐿𝑐𝑒 is exactly the same as the 

stretching force of 𝐿𝑠𝑒. Such a force, 𝑃 is assumed to be proportional to the stretch in 𝐿𝑠𝑒 

(Hooke’s Law) as given below (also see [4]): 

 

𝑃 = 𝛼(𝐿𝑠𝑒 − 𝐿𝑠𝑒(0)) 

 



where, 𝛼 is the spring contant and 𝐿𝑠𝑒(0) is the length of the series elastic element before 

the contraction. The rate of change in 𝐿 is therefore: 

 

𝑑𝐿

𝑑𝑡
=
𝑑𝐿𝑐𝑒
𝑑𝑡

+
𝑑𝐿𝑠𝑒
𝑑𝑡

= 𝑣𝑐𝑒 +
𝑑𝐿𝑠𝑒
𝑑𝑡

 

 

where, 𝑣𝑐𝑒  is the shortening velocity of the contractile element. Similarly, the rate of 

change of 𝑃 is given by: 

 

𝑑𝑃

𝑑𝑡
= 𝛼

𝑑𝐿𝑠𝑒
𝑑𝑡

 

 

From the above, it is noted that during length changes, the force 𝑃 responds to length 

change primarily in 𝐿𝑠𝑒. For isometric contractions, in which the total muscle length is held 

constant, the contractile element subsequently readjusts to restore the 𝐿𝑠𝑒 and therefore 

the force, 𝑃.   

 

b) Heat released and force-velocity relationship 

The original formulation for the force-velocity relationship given by A.V.Hill, was based 

on the measurements of heat released during muscle shortening. The heat released 

depends on the distance ( 𝑥 ) and velocity ( 𝑣 ) of shortening. To measure these 

relationships, Hill’s experiments consisted of testing the effect of different shortening 

velocities on the heat released during shortening. To achieve a consistent initial condition, 

he began at the tetanic force, 𝑃0  during an isometric contraction and subsequently 

measured the heat released during muscle shortening for varying loads (𝑃) (also see 

Figs. 4 - 6). The heat released during muscle shortening is given as 𝑎𝑥, g.cm, where 𝑎 

was experimentally determined to be a constant and has the unit of force. Next, if 𝑃 g of 

load is lifted by the muscle, the work done is given as 𝑃𝑥, g.cm.  

 

The total energy in excess of the isometric contraction is given as: 

 

ℎ = (𝑃 + 𝑎)𝑥, in g.cm 

 

The rate of change in energy is therefore written as: 

 

𝑑ℎ

𝑑𝑡
= (𝑃 + 𝑎)

𝑑𝑥

𝑑𝑡
= (𝑃 + 𝑎)𝑣 

 

Experimentally, Hill found that this rate of change of energy release increased linearly as 

the load, 𝑃 diminished such that, it was zero when 𝑃 = 𝑃0. This relationship is known as 



the famous Hill equation and relates the rate of heat released during muscle shortening 

to the corresponding load/force, as given below: 

 

(𝑃 + 𝑎)𝑣 = 𝑏(𝑃 − 𝑃0) 

 

where, 𝑏 is the slope of the above linear relationship. The constant 𝑏 is defined as the 

absolute rate of energy liberation.  

 

3. Model Simulations 

Figure 3 illustrates a flow diagram of the computational steps of the two-component 

biomechanical muscle model. The changes in muscle length (𝐿) is translated into force 

(𝑃) and heat production (𝐻). The model reproduces known physiological relationships 

between these quantities. The description here is restricted to isometric conditions where, 

the muscle length is held constant to generate a corresponding steady-state force.  

 

 

 

Figure 3 – A flow chart of the computational steps of Hill model. The model input is 

the assumed muscle length (L) and outputs include lengths of the series elastic and 

contractile elements, velocity, force and heat released.  The ovals indicate computational 

steps. 

 

 

 



a) Force-Length Relationship 

 

Figure 4 illustrates the force generation during an isometric contraction. In this 

simulation experiment, the initial length 𝐿𝑠𝑒 is set 30% of the total length 𝐿 at rest, such 

that the 𝐿𝑐𝑒 is at 70% of 𝐿; note that the force is zero. To mimic muscle shortening during 

an isometric contraction, the value of 𝐿𝑐𝑒 is reduced to 60% of 𝐿. Note that this change in 

length is not instantaneous but has an initial transitory phase as 𝐿𝑐𝑒  shortens and 𝐿𝑠𝑒 

increases to ensure 𝐿  is constant. Correspondingly, the force, 𝑃  increases. After 

stabilization of 𝐿𝑐𝑒 and 𝐿𝑠𝑒, the force 𝑃 saturates at the steady-state value of the isometric 

contraction. A white noise was added to the force function in these simulations to match 

realistic conditions. 

 

 
Figure 4 – Force-Length Relationship. In the above simulation, 𝐿𝑠𝑒 was set to 30% of 

the total muscle length, 𝐿 . The simulation included motor noise in order to more 

realistically model physiological force production. 

 

b) Force-Velocity Relationship 

Hill empirically demonstrated that when held at the tetanic condition during an 

isometric contraction, subsequent increases in muscle load, 𝑃, decreased the shortening 

velocity, 𝑣 of the muscle over a distance, 𝑥, cm. Such experiments can be simulated in 

the model to reproduce this force-velocity relationship. As shown in Fig. 5, beginning at 

an isometric force of 150 mN, the shortening velocity, 𝑣 mm/s was changed from a value 



zero to 1 in repeated simulations to compute the resulting steady-state force. This inverse 

force-velocity relationship is summarized by an exponential regression fit as shown in the 

figure.  

 
Figure 5 – Relationship between force and shortening velocity. Red circles show the 

steady-state force for different values for shortening velocity in individual simulations. The 

blue line shows a regression fit highlighting an inverse force-velocity relationship. 

 

c) Length-Heat Relationship 

Hill demonstrated that the heat released during muscle shortening is independent 

of the shortening velocity. This critical aspect on the thermodynamics of isometric 

contraction is illustrated by the simulations in Fig. 6. The muscle model was released 

from an isometric tetanus at 2 s, and was subject to different shortening velocities as 

shown in Fig. 6A. The corresponding heat liberated as shown in Fig. 6B depends only 

on the shortening distance, 𝑥 (here, 𝑥  = 0.5 mm) and not on the shortening velocity. 

Specifically the total amount of heat released due to muscle shortening was the same 

across all of the simulations, despite varying shortening velocities. These results 

demonstrate that the shortening distance 𝑥 is a crucial determinant of the energy released 

by the muscle. When held in completely isometric conditions, the energy released is zero 

because there is no change in distance. 

 



 
 

Figure 6 – Force-Velocity and Length-Heat Relationships. A. The muscle was held in 

isometric tetanus for 2 seconds, after which it was subject to different shortening 

velocities. From right to left, the shortening velocities shown are 1 mm/s, 0.50 mm/s, 0.33 

mm/s, 0.25 mm/s, 0.20 mm/s, and 0.17 mm/s. After undergoing a period of shortening, 

all of the simulations ended at the same final length, which was ½ of the original length 

of the muscle at isometric tetanus. B. The heat released by the muscle for the different 

shortening velocities in A are plotted (heat responses are color matched with traces in 

A). Over shorter periods of shortening, the rate of energy released is higher or reaches 

the maximal level more quickly; for this simulation, the end length was the same and note 

that the energy released at the end of shortening is the same across all trials.  

 

Conclusion 

 Computational models of muscles help explain the principles of muscle physiology 

and force generation. The Hill model described here offers insights into the relationships 

between muscle length, force, velocity, and heat released based on the classic 

experiments by A. V. Hill (1938). The model is useful to begin understanding the 

quantitative aspects of muscle physiology and biomechanics.  
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Appendix 

Model Implementation using MATLAB 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%                                  Hill Muscle Model                                        %%%%% 

%%%%%                               Jakob von Morgenland                                   %%%%% 

%%%%%   The Hill Muscle Model and its Implementation (JVM and SV)   %%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Preparing inputs for the Hill function 

t=0:0.001:5; 

% time from 0 to 5 seconds with 0.001 time step 

L=ones(length(t),1); 

% initializing length of muscle to 1 

L2=ones(length(t),1); 

m=[-1,-0.5,-1/3,-0.25,-0.2,-1/6] 

% theoretical slopes for linear velocity equations 

yint=[3,2,1.66,1.5,1.4,1.32] 

% calculated y-intercepts for linear velocity equations 

vel=[1,0.5,1/3,0.25,0.2,1/6,0] 

% theoretical velocity values derived from slope calculations 

% not used in rest of simulation, included for reference for force-velocity graph 

force=[7.437,34.51,52.68,65.71,75.52,83.16,144.9] 

% calculated force values derived from simulations using theoretical velocity values 

Input-Output relationship for Hill Model 

[P,H,Lse,Lce] = hill(L,t); 

% Inputs = muscle length (L) and time (t) 

% Outputs = force (P), heat (H), and the individual element lengths (Lce and Lse) 

For loop to determine force-velocity relationship 

for j = 1:length(m) 

    for i = 1:length(t)-1 

        if t(i)<2 

            L2(i)=1; 

        else 

            if t(i)>= 2 

                L2(i)=yint(j)+m(j)*t(i); 

            end 

        end 

        if L2(i) < 0.5 

            L2(i)=0.5; 

            i=length(t); 

        end 



    end 

    [P2,H2,Lse2,Lce2] = hill(L2,t); 

    Pss(j)=P2(length(t)-1); 

end 

Hill function 

function [P,H,Lse,Lce] = hill(L,t) 

Model parameters 

a = (380*.098);   % shortening and heat excess proportionality constant 

b = 0.325;        % excess energy and steady-state force proportionality constant 

P0 = a/0.257;     % initial force in isometric contraction 

alpha = P0/0.1;   % spring constant for series elastic element 

Lse0 = 0.3;       % initial length of the series elastic element 

k = a/25;         % heat production constant 

Initialize arrays for outputs 

Lse = zeros(length(t),1); 

Lce = zeros(length(t),1); 

Lse(1,:) = Lse0; 

Lce(1,:) = 1-Lse0; 

H = zeros(length(t),1); 

P = zeros(length(t),1); 

Solver for length input into Hill model 

for j = 2:(length(t)) 

    dt = (t(j)-t(j-1)); 

    dL = (L(j)-L(j-1)); 

    dP = alpha*((dL/dt)+b*((P0-P(j-1))/(a+P(j-1))))*dt; 

    P(j) = P(j-1)+dP; 

    H(j) = H(j-1)+(k+a*b*((P0-P(j-1))/(a+P(j-1))))*dt; 

    Lse(j) = Lse0+P(j-1)/alpha; 

    Lce(j) = L(j)-Lse(j); 

end 

Creates noise for more realistic output 

for i = 1: length(H) 

     H(i) = H(i)+(k/10)*randn(1); 

     P(i) = P(i)+(P0/100)*randn(1); 

end 

end 

 


